3 (Sem-3/CBCS) MAT HC 2

2022

Stimus eclaso Litad

MATHEMATICS

(Honours)

Paper: MAT-HC-3026

(Group Theory-I)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any ten questions: 0 1×10=10

Show that their is no asome

- (d) What do you mean by the symmetry group of a plane figure?
- The set S of positive irrational numbers together with 1 is a group under multiplication. Justify whether it is true or false.

- 0 Define a binary operation on the set {0, 1, 2, 3, 4, 5} for which it is a group,
- (a) Let $G = \langle a \rangle$ be a cyclic group of order of G. condition for which a^k is a generator n. Write a necessary and sufficient
- What do you mean by even permutation? Give an example.
- $\langle t \rangle /$ Write the order of the alternating group of degree n.
- *(g)* Let $G = S_3$ and $H = \{(1), (13)\}$. Write the left cosets of H in G. Whom Mun
- Show that there is no isomorphism zero rational numbers under multiplifrom Q, the group of rational numbers under addition, to Q#, the group of non-
- (i) State Cayley's theorem.
- (j) Let $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_{12}$ be defined by $\phi(x) = 3x$, $x \in \mathbb{Z}_{12}$. Find ker ϕ .

(k) On the set $\mathbb{R}^3 = \{(x,y,z): x,y,z \in \mathbb{R}\},$ define a binary operation for which it

is a group, and notalisates

- (1) Define normalizer of an element in a group G.
- again a subgroup. State whether true (m) Product of two subgroups of a group is or false
- (n) State Lagrange's theorem.
- (o) What is meant by external direct product of a finite number of groups?
- (p) Find the order of the permutation

$$\frac{\partial}{\partial a} \frac{\partial}{\partial b} \frac{\partial}{\partial c} \frac{\partial$$

- outs a Storb C. when show that o (g) The subgroup of an abelian group is abelian. State whether it is true or false.
- Give the isomorphism theorem. statement of third

Answer any five questions:

2×5=10

- (a) Show that in a group G, right and left cancellation laws hold.
- (b) Show that a group of prime order is cyclic.
- Every subgroup of an abelian group is normal. Justify whether it is true **or** false.
- (d) Let \mathbb{C}^* denote the group of non-zero complex numbers under multiplication. Define $\phi:\mathbb{C}^*\to\mathbb{C}^*$ by $\phi(x)=x^4, x\in\mathbb{C}^*$. Show that ϕ is a homomorphism and find ker ϕ .
- If ϕ is an isomorphism from a group G onto a group \overline{G} , then show that ϕ carries the identity element of G to the identity element of \overline{G} .
- (f) What is meant by cycle of a permutation? Give an example.

- (g)) Show that in a group (G, \bullet) ,
- $(a.b)^{-1} = b^{-1}.a^{-1}, \ a, b \in G.$ (b) Define centre of a group G and give an example.
- (i) Give an example of a group containing only three elements.
- (j) Define group isomorphism and give an example.
- 3. Answer any four questions: 5×4=20
- N(g) Show that any two cycles of a permutation of a finite set are disjoint.
- (b) If H and K are two normal subgroups of a group G such that $H \cap K = \{e\}$ (e being the identity element of G), then show that hk = kh for all $h \in H$, $k \in K$.
- Show that there exists a one-one and onto map between the set of all left cosets of H in G and the set of all right cosets of H in G.

0

- (e) Let f be a homomorphism from a groupG to a group G'. Show that ker f is a normal subgroup of G.
- (f) If \mathbb{R}^* is the group of non-zero real numbers under multiplication, then show that (\mathbb{R}^*, \bullet) is not isomorphic to $(\mathbb{R}, +)$.
- (g) Prove that a cyclic group is abelian.
- (h) Consider the multiplicative group $G = \{1, -1, i, -i\}$. Define a self mapping ϕ on G which is a homomorphism and justify your answer.

Answer any four questions:

10×4=40

- (a)/ Let G be a group. Show that
- (ii) the centre of G is a subgroup of G; (iii) for each $a \in G$, the centralizer of

a is a subgroup of G.

(b) Let G be a group in which $(ab)^3 = a^3b^3$ $(ab)^5 = a^5b^5 \text{ for all } a, b \in G.$

Prove that G is abelian.

- (c) Prove that every subgroup of a cyclic group is cyclic. Also show that if $|\langle a \rangle| = n$, then the order of any subgroup
- of $\langle a \rangle$ is a divisior of n.
- (d) If H and K are finite subgroups of a group G, then prove that

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$$

2 = a+

- (e) Prove that the order of a permutation of a finite set written in disjoint cycle form is the least common multiple of the lengths of the cycles.
- Let G be a finite abelian group and let p be a prime that divides the order of G. Prove that G has an element of order p.
- (g) Let ϕ be an isomorphism from a group \overline{G} onto a group \overline{G} . Prove that—
 - (i) for every integer n and for every $a \in G$, $\phi(a^n) = [\phi(a)]^n$;
 - (ii) $|a| = |\phi(a)|$ for all $a \in G$.
- State and prove the second isomorphism theorem for groups.
- (i) Show that the order of a cyclic group is same as the order of its generator.
- (i) Consider the multiplicative group $G = \{1, -1, i, -i\}$. Find all the subgroups of G and verify Lagrange's theorem for each subgroup.